投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

公路与水路运输论文_基于残差神经网络的沥青路

来源:清洗世界 【在线投稿】 栏目:期刊导读 时间:2021-10-14
作者:网站采编
关键词:
摘要:文章摘要:为提高沥青路面裂缝的识别精度与速度,提出一种基于残差神经网络的沥青路面裂缝自动识别算法。首先建立沥青路面图像集,使用数据清洗算法对综合检测车采集到的裂缝图像

文章摘要:为提高沥青路面裂缝的识别精度与速度,提出一种基于残差神经网络的沥青路面裂缝自动识别算法。首先建立沥青路面图像集,使用数据清洗算法对综合检测车采集到的裂缝图像进行数据清洗,构建沥青路面裂缝图像样本数据集,并将图像集按8:2的比例划分为训练集和测试集;接着采用残差神经网络ResNet50对清洗后的数据进行训练,得到网络权重后使用训练好的网络对沥青路面裂缝数据进行预测,评价网络准确性。试验结果表明:沥青路面图像清洗算法的准确率为95%,能良好地实现沥青路面原始图像的清洗;裂缝图像分类的平均准确率达到94%,其中横向裂缝、纵向裂缝、龟裂、块状裂缝的识别准确率分别为96.1%、94.6%、93.6%和94.1%。

文章关键词:

论文分类号:U416.217;U418.66

文章来源:《清洗世界》 网址: http://www.qxsjzz.cn/qikandaodu/2021/1014/1846.html



上一篇:医学教育与医学边缘学科论文_医学信息在医学图
下一篇:燃料化工论文_天然气处理终端MDEA溶液脱碳系统

清洗世界投稿 | 清洗世界编辑部| 清洗世界版面费 | 清洗世界论文发表 | 清洗世界最新目录
Copyright © 2018 《清洗世界》杂志社 版权所有
投稿电话: 投稿邮箱: